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Background:Multicolor flow cytometry (MFC) analysis iswidely used to identifyminimal residual disease (MRD)
after treatment for acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). However, current
manual interpretation suffers from drawbacks of time consuming and interpreter idiosyncrasy. Artificial intelli-
gence (AI), with the expertise in assisting repetitive or complex analysis, represents a potential solution for these
drawbacks.
Methods: From2009 to 2016, 5333MFC data from1742AMLorMDSpatientswere collected. The 287MFC data at
post-induction were selected as the outcome set for clinical outcome validation. The rest were 4:1 randomized
into the training set (n = 4039) and the validation set (n = 1007). AI algorithm learned a multi-dimensional
MFC phenotype from the training set and input it to support vector machine (SVM) classifier after Gaussianmix-
ture model (GMM) modeling, and the performance was evaluated in The validation set.
Findings: Promising accuracies (84·6% to 92·4%) and AUCs (0·921–0·950)were achieved by the developed algo-
rithms. Interestingly, the algorithm from even one testing tube achieved similar performance. The clinical signif-
icance was validated in the outcome set, and normal MFC interpreted by the AI predicted better progression-free
survival (10·9 vs 4·9 months, p b 0·0001) and overall survival (13·6 vs 6·5 months, p b 0·0001) for AML.
Interpretation: Through large-scaled clinical validation, we showed that AI algorithms can produce efficient and
clinically-relevant MFC analysis. This approach also possesses a great advantage of the ability to integrate other
clinical tests.
Fund: Thisworkwas supported by theMinistry of Science and Technology (107-2634-F-007-006 and 103–2314-
B-002-185-MY2) of Taiwan.
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1. Introduction

Acute myeloid leukemia (AML) and myelodysplastic syndrome
(MDS) are characterized by abnormal proliferation of myeloid progeni-
tors and subsequent bone marrow failure [1]. Existence of minimal (or
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.edu.tw (J.-L. Tang).

an open access article under
measurable) residual disease (MRD), which refers to leukemic cells de-
tected below the threshold for morphological recognition (about 5%), is
a valuable marker for evaluating the response after treatment, and now
serves as an important prognostic indicator for AML [2]. The European
LeukemiaNet (ELN) MRD Working group consensus report recom-
mends MRD testing as part of the standard of care for AML patients
[3]. Studies have demonstrated that multiparameter flow cytometry
(MFC) can effectively detect minimal residual disease (MRD) and strat-
ify prognosis in AML and MDS after therapy [4–10]. However, current
MFC presents drawbacks such as lack of inter-lab standardization [11],
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context

Evidence before this study

Multiparameter flow cytometry (MFC) has been utilized exten-
sively to detect minimal residual disease (MRD) and risk stratifica-
tion for hematological malignancies, such as AML (acute myeloid
leukemia) and MDS (myelodysplastic syndrome). However, cur-
rent MFC interpretation is through subjective manual gating
which has unavoidable drawbacks including individual idiosyn-
crasy and time-consuming. Although research endeavors have
been put into computational method development for universal
automated MFC analysis, they were not developed from bone
marrow samples,which is clinically essential but complex for anal-
ysis. Furthermore, none of them are from large-scaled real-world
datasets, nor effectively validated in clinical settings.

Added value of this study

In this study, we utilized two artificial intelligence (AI) techniques
to develop a MFC interpretation algorithm for MRD detection
using a real-world cohort of over 1000 AML and MDS patients
with over 5000 MFC data on bone marrow samples. High clinical
validity of the algorithm was demonstrated, through successful
outcome prediction in the post-induction setting.

Implications of all available evidence

We demonstrated the algorithms developed via AI could ac-
complish classification task in a very short time (merely 7 s)
with about 90% accuracies on MRD detection on AML and MDS.
In addition, the results of predicting outcome in the post-
induction setting demonstrated a high prognostic significance of
the AI algorithms.
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and painstaking manual gating process involving serial projections of
two dimensional attributes [12]. Two main MFC analysis approaches
for leukemia MRD detection are used now [13]. Leukemia-associated
aberrant immune-phenotype (LAIP) approach assays MRD under the
assumption that the residual disease possesses the phenotype identical
to the initial one, and therefore is highly dependent on individually se-
lected antibody combination panels according to leukemia phenotype
identified at diagnosis [13,14]. Instead, “difference from normal” ap-
proach uses a standardized panel of antibodies for all specimens and
distinguishes abnormal residual leukemic cells from normal ones with
established immunophenotypic profiles, and therefore does not require
knowledge of the phenotype at diagnosis for theMRD detection [13,14].
Although more biologically reasonable, the LAIP approach risks in
higher false negative MRD rates due to altered antigen expression
from clonal evolution during disease progression [14,15]. Furthermore,
the quality of both approaches depends highly on experienced physi-
cians, and individual idiosyncrasy inevitably affects diagnostic repro-
ducibility and objectivity. In addition, manual gating is time-
consuming and infeasible to obtain information from the multivariate
measurement data due to it observational nature [12,16]. A reliable au-
tomatedMFCanalysis can benefit and improve the healthcare quality by
providing rapid clinical decision support.

Supervised machine learning (SML), a branch of artificial intelli-
gence (AI), operates by learning from data and expert labels to generate
reliable automated inference [17–19]. Rather than using predefined
model, SML performs inference by learning the underlying patterns
(functional mapping) between measurement data and desirable out-
come variable with large-scale data [20]. In recent years, a growing
number of breakthroughs utilizing AI in clinical research have been re-
ported regarding automatic disease pattern recognition and outcome
stratification [21–23]. For instance, expert-level accuracy can be
achieved by applying SML approach on images for skin cancer diagnosis
[21,22], or diabetic retinopathy identification [24,25]. SML approach in
estimating mortality within 100 days after hematopoietic stem cell
transplant (HSCT) using alternating decision tree model has been stud-
ied on retrospective registry data [23]. Although several SML-based ap-
proaches have been developed for automated MFC analysis and its
visualization tools in AML or MDS [12,26–34], they either suffer from
small case number without large-scaled clinical validation, or use MFC
data derived from peripheral blood, an approach with high false nega-
tive MRD rates and therefore not commonly used in clinical settings.
Furthermore, none of them attempts to correlate with patient outcome.
In thiswork,we applied SML techniques in analyzingMFC dataset to de-
velop an automated MFC interpretation algorithm for detecting MRD
objectively in AML and MDS patients, and we validate it with large-
scaled clinical data and patient survival, the most relevant clinical
outcome.

2. Materials and methods

2.1. Study population and variables

From 2009 to 2016, 1742 AML or MDS patients whowere treated at
National Taiwan University Hospital were enrolled retrospectively. A
total of 5333 MFC data for bone marrow aspiration from themwere in-
cluded for analysis (Supp. Table S1). To illustrate prognostic impacts,
287 AML patients with available post-induction bone marrow MFC
data (MFC performed from day+0 to day+45 after the initiation date
of induction chemotherapy) and clinical outcome were included in the
survival analysis. Their cytogenetic and gene mutation analysis were
used for risk stratification by the 2017 European LeukemiaNet (ELN)
recommendation [35]. This study, along with the policy to waive in-
formed consents, was approved by the Research Ethic Committee of
the National Taiwan University Hospital (No. 201705016RINA).

2.2. MFC measurement

MFCwas performedon each enrolled bonemarrow aspirate samples
with a myeloid panel consisting of markers listed in Supp. Table S2, and
the antibodies used were listed in Supp. Table S3. A total of 100,000
events were collected for each tube within the panel. Two different
flow cytometers were used in different time periods: 2574 MFC were
performed on FASCalibur (Calibur) (Becton Dickinson Bioscience)
from Sep 2009 to Oct 2013 and 2759 MFC on FASCanto-II (Canto-II)
(Becton Dickinson Bioscience) from Oct 2013 to Dec 2016.

2.3. Cytogenetic and molecular testing

Trypsin-Giemsa technique was used for banding metaphase chro-
mosomes, and cytogenetic was karyotyped according to the Interna-
tional System for Human Cytogenetic Nomenclature, as described
earlier [36]. Genetic mutations including NPM1, FLT3-LTD, CEBPA,
RUNX1, and CBFB-MYH11 mutations were examined also as described
previously [37,38]. The cytogenetic and genetic mutation analyses con-
ducted at diagnosis were included for risk stratification.

2.4. MFC labeling for SML algorithm training

Each MFC data had been manually analyzed using the “different-
from-normal” approach, and the results were categorized into 3 groups:
“AML” for freshly diagnosed AML and residual AML cells after treat-
ments, “MDS” for freshly diagnosed MDS and residual MDS cells after
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treatment, and “normal” represents specimens without diseased cells.
The labels are mutually exclusive for each MFC data.
2.5. Outcome set, training set and validation set sample selection

After leaving287MFC data out from287AMLpatientswith available
post-induction bonemarrowMFC data and clinical outcome as the out-
come set for survival analysis, the rest of the MFC data were 4:1 ran-
domized into the training set and the validation set, consisting 4039
and 1007 MFC data, respectively (Fig. 1). The training set was used for
training and tuning the SML algorithm, and the validation set for evalu-
ating the performance. Manual analytical results were blinded when
MFC data in the outcome set was analyzed by SML algorithm. Algo-
rithms for pair-wise recognition (AML-vs-normal, MDS-vs-normal and
abnormal (AML + MDS)-vs-normal) were developed independently.
Algorithms were also separately developed for MFC data from Calibur
and Canto-II, and an independent algorithmwas generated for the com-
bined MFC sub-datasets after we convert MFC values from Calibur with
the conversion formula: Canto-II = Calibur MFI × (218/10,000) pro-
vided by themanufacturer. We used a five-fold cross-validation evalua-
tion scheme.
Fig. 1. Training, validation, and outcome sets for algorithmdevelopment. The 287 post-inductio
data were randomly assigned to the training set and validation set with 4:1 ratio respectively.
Supp. Table S2) together with the flow diagnosis label in the training set are used to train the
between the flow diagnosis label and AI diagnosis for each given sample in the validation s
intelligence; AUC, area under the receiver operating characteristic (ROC) curve
2.6. SML algorithm development

The recorded raw values from the 6 fluorescent channels of each
tube were max-min normalized. We then derived a MFC feature vector
to characterize these raw cells attributes, and diagnostic classification
was performed by support vector machine (SVM) [39]. The phenotype
representation was derived via two steps: first, wemodeled each tube's
raw attributes values with a generative probability distribution; then
we derived a high-dimensional vectorized representation by computing
the Fisher gradient score with respect to the learned model parameters
for each tube sample. Finally, the concatenation of multiple tube-level
vectors provided a joint representation to characterize each MFC data,
termed the MFC feature vector. An SVM was further trained to classify
the diagnoses on these MFC feature vectors (Supp. Fig. S1). Specifically,
each of the tubes was statistically-modeled as a multivariate Gaussian
mixturemodel (GMM). The GMMwas trained in an unsupervisedman-
ner usingmaximum likelihood estimation to derive themodel parame-
ters, which include the following:

λ ¼ ωk; μk;σk; k ¼ 1…K ð1Þ

where ωk; μk; σk were weight, mean and covariance respectively and K
nMFC data of 287 AML patients were assigned in the outcome set first, and the rest ofMFC
The raw data consisting of one 100,000 (events) *6 (channels) matrix for each tube (as in
classification algorithm. The accuracy is determined by comparing the concordance rate
et. Flow diagnosis label is the manual interpretation results. Abbreviation: AI, artificial
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indicated howmany clusters there were in the GMM. Using the learned
GMM with parameter set λ (including weight, mean, and covariance),
we can derive the tube-level feature vector:

Let X ¼ xt ; t ¼ 1…T ð2Þ

be a set of T FC cell samples in each tube, and the gradient of log likeli-
hood was termed as the Fisher score function: ∇λlogP(X|λ), where like-
lihood for a given GMM was defined as

P xt jλð Þ ¼
XK
i¼1

ωiPi xt jλð Þ ð3Þ

Then, the tube-level feature vector was derived as the first and sec-
ond order statistics of the gradient function (the gradient function indi-
cated the direction of λ for the original GMM to better fit the data
sample X).

gXμk
¼ 1

T
ffiffiffiffiffiffi
ωk

p
XT
t¼1

γt kð Þ xt−μk

σk

� �
ð4Þ

gXσk
¼ 1

T
ffiffiffiffiffiffiffiffiffi
2ωk

p XT
t¼1

γt kð Þ xt−μk

σk

� �2

−1

 !
ð5Þ

Where

γt ¼ P ijxt ;λð Þ ¼ ωiPi xt jλð ÞPN
j¼1 ω jP j xt jλð Þ

ð6Þ

was the posterior data likelihood.
Each tube-level feature vector was a vector of [gμk

Xgσk

X].
These tube-level feature vectors were concatenated and L2-

normalized:

R ¼ Rj jj j2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ r21 þ…þ r2d

q
ð7Þ

where R was the tube-level feature vector with d dimensions. The nor-
malization of the vector was important to ensure that each feature vec-
tor was of unit-norm in order to provides better numerical
representation that can be used in the SVM classification. Each normal-
ized tube-level feature vector for a patient's measurement was
concatenated together, which forms the final feature dimensions.

The use of GMM model as the generative probabilistic representa-
tion with Fisher scoring to derive vectorized representation combined
the advantage of both generative and discriminative properties in com-
pactly representing the high-dimensional information in the raw FC
samples. In summary, the original raw cell attributes of each tube
were encoded into a tube-level feature vector. Vectors of each tube
formed the final high-dimensional (Dim = 2*K*D, where K was the
number of Gaussian components and D is the dimension of raw data)
input to the supervised machine learning classifier. We used VLfeat
open source python toolbox for the Fisher-vector GMM encoding [40],
and scikit-learn, another open source package, for the support vector
machine (SVM) with linear kernel function to perform linear SVM clas-
sification, which operated by finding a hyper-plane to maximize the
classification margin [41]. Both the number of Gaussian components
of the GMM model and the penalty factor C of the SVM were obtained
by grid search. All the experiments were conducted in a device
equippedwith Intel i7-6700@3.40GHz and 64GB randomaccessmem-
ory (RAM).

The pseudo code of the algorithm is illustrated below:

T : all the tubesf g

Input data {X1,X2,…,XN} ∈ XT×D
Input initial GMM, λt ∈ ΛtK×D,

λt ¼ ωt ; μ t ;σ tð Þ ð8Þ

For t in T:
Train tube-level GMM:
Use {X1, t,X2, t,…,XN, t} and EM algorithm
Update λt ← λt′
With GMM λt, compute tube-level feature vector:

ϕλt
i;t ¼ ϕ Xi;t ;λt

� �
; for i ¼ 1;…;N ð9Þ

End

ϕi ¼ concat ϕλ1
i;1;ϕ

λ2
i;2;…;ϕλT

i;T

h i� �
ð10Þ

for i = 1,…, N

ϕi ¼ L2− norm ϕið Þ; for i ¼ 1;…;N ð11Þ

Output {ϕ1,ϕ2,…,ϕN}
Input feature vectors {ϕ1,ϕ2,…,ϕN}
Input labels {Y1,Y2,…,YN}
SVM classifier for {(ϕi,Yi)i=1, …, n}

2.7. Sensitivity-specificity and tube importance evaluation

To evaluate the classification performance, accuracy (ACC) was used
and defined as the concordance rate between the diagnoses made from
manual and AI interpretations. Furthermore, the test sensitivity and
specificity were assessed using AUC (area under receiver operating
characteristic (ROC) curve).

2.8. Survival analysis

To predict survival is one ultimate clinical application for MRD de-
tection. In order to validate the clinical effectiveness of our SML algo-
rithm in detecting MRD, we proposed to examine the correlation of
SML interpretation results and the survival in AML patients. Survival
analysis was performed on the 287 AML patients in the outcome set,
with blinded manual interpretation results at analysis. Overall survival
(OS) was measured from the date of MFC data to the date of allogeneic
HSCT (allo-HSCT), or the date of last follow-up, or death of any cause,
whichever comes first. Progression–free survival (PFS) was measured
from the date of MFC data to the date of first relapse, to the date of
allo-HSCT, or to the date of last follow-up, whichever comes first. The
Kaplan-Meier method was used to estimate OS and PFS. Cox propor-
tional hazardmodels were used to estimate hazard ratios (HRs) for uni-
variate and multivariable analyses of OS and PFS. AI-diagnosis of each
MFC data, genetic risk group, age, gender, and induction chemotherapy
were used as covariates. All statistical analyses were conducted using
survival package in R and Kaplan-Meier curves were plotted using
survminer package in R (R Core Team) [42].

3. Results

3.1. Patient characteristics for MFC data

The characteristics of 5333 enrolled MFC data were listed in Supp.
Table S1. For Caliber, 2574 MFC data from 908 patients were collected,
and 2759 MFC data from 1046 patients for Canto-II. As much as 31·5%
(1683/5333) of MFC data were interpreted as abnormal (AML or
MDS). AML was interpreted in 26·8% Calibur and 22·9% Canto-II MFC
data, and MDS in 5·3% Calibur and 8·2% Canto-II data.
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3.2. Algorithm performance

We generated classification algorithms in 9 different comparative
scenarios: AML-vs-normal, MDS-vs-normal and Abnormal (AML or
MDS)-vs-Normal on Calibur, Canto-II, and Calibur+Canto-II
respectively.
Fig. 2. Algorithm performance assessment on the validation set. Binary classification performa
sub-dataset, (B) Canto-II sub-dataset, (C) Calibur& Canto-II sub-dataset. The “n” value indicates
performed on five independent validation sets with non-overlapping MFC data and shown in
diagnosis of multi-color flow cytometry data; AUC: Areas under the receiver operating charact
The algorithm performance was illustrated in Fig. 2, and the change
in accuracy andAUC as function of different number of Gaussian compo-
nents was shown in Supp. Table S4. The AML-vs-normal classification
accuracy achieved scores ranging from 89·4% to 92·4% in different sce-
narios, whereas the accuracy of MDS-vs-normal classification achieved
84·9% to 90·8%. For abnormal-vs-normal classification, the accuracy
nce for the AML-vs-normal, MDS-vs-normal and abnormal-vs-normal groups: (A) Calibur
thenumber ofMFC data in the analysis for each column. Thefive-fold cross-validationwere
Supp. Table S5. Abbreviation: ACC: accuracy, equal to the concordance rate with the flow
eristic (ROC) curves. MFC, multi-color flow cytometry



Fig. 3. Feature selection analysis of abnormal vs normal classifier. Tube combinations: 1:
Calibur-5th tube (CD16, CD13 & CD45), Canto-II-2nd tube (HLA-DR, CD11b & CD45); 2:
Calibur-5th & 11th tube (HLA-DR, CD34 & CD45), Canto-II-2nd & 4th tube (CD46, CD38
& CD45); 3: Calibur-5th & 9th (CD34, CD38 & CD45) & 11th tube, Canto-II-2nd & 4th &
7th tube (CD14, CD33 & CD45); 4: Calibur-2nd, 5th, 9th & 11th, Canto-II-2nd, 4th, 7th &
9th tube; 5: Calibur-2nd,4th,5th,9th & 11th tube, Canto-II-2nd, 4th, 6th (CD15, CD34 &
CD45), 7th & 9th tube. Tubes included in each feature selection analysis experiments are
listed in Supp. Table S5.

Table 2
Patient demographics of the outcome set.

Patient characteristics N (%)

All patients 287 (100·0%)
Gender (n = 287)
Male 132 (46·0%)
Female 155 (54·0%)

Age (y) (n = 287)
b30 21 (7·3%)
30–39 61 (21·3%)
40–49 57 (19·9%)
50–59 63 (22·0%)
≥60 85 (29·6%)

Induction chemotherapy (n = 287)
Standard 262 (91·3%)
Non-standard 25 (8·7%)

Genetic groupa (n = 287)
Adverse 56 (19·5%)
Intermediate 174 (60·6%)
Favorable 56 (19·5%)
NA 1 (0·3%)

HSCT (n = 287)
Yes 144 (49·8%)
No 143 (50·2%)

Abbreviation: HSCT, Hematopoietic stem cell transplant.
a Genetic group assigned following 2017 European LeukemiaNet (ELN)

recommendations.
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ranged from 84·6 to 89·7%. Based on AUC and the shape of ROC curves,
the AML-vs-normal classifier had the highest performance, followed by
the abnormal-vs-normal and theMDS-vs-normal. Moreover, the overall
classifier performance for Calibur sub-dataset was higher than that for
Canto-II sub-dataset, which was relatively equivalent to that for
Calibur+Canto-II sub-dataset (Fig. 2A–C). The ACC and AUC for the
five-fold cross-validation in the validation set were illustrated in Supp.
Table S5. The whole training process was completed within 13 h, and
the average running time was 7 s for conducting analysis in single
MFC data with developed SML algorithm.

3.3. Feature selection analysis

Feature selection analysis was performed to find the relative impor-
tance of markers in the automated algorithm. In the first round, we
trained the algorithms with data from just one tube, and then we
found the best tube with highest AUC. The abnormal-vs-normal algo-
rithm was used for analysis for Calibur and Canto-II, with two-fold
cross-validation. As shown in Table 1, we found that learning from
one single tube could yield a reliable AUC (ranging from 0·898 to
0·943 for Calibur, and from 0·829 and 0·886 for Canto-II), although
we noted that the tubes with the best performance was not the same
(5th tube (CD16/CD13/CD45) for Calibur and 2nd tube (HLA-DR/
CD11b/CD45) for Canto-II).

Next, we trained the algorithm by adding data from each of the
remained tubes to that from previous selected tube(s), and we found
the best 2-tube combination with highest AUC; the process was re-
peated until data from all tubes were included. The tubes selected in
each round and the resultant AUCs were listed (Supp. Table S6), and
the fold1 resultant AUCs were illustrated in Fig. 3. Interestingly, includ-
ing data from more than the best 2-tubes did not significantly improve
AUC scores in Calibur (from 0·932 (2 tubes) to 0·934 (11 tubes)). In
Canto-II, data from 4 tubes seemed adequate to obtain high AUC scores
(from 0·899 (4 tubes) to 0·845 (13 tubes)). These findings suggested
that the SML approach could execute a binary classification well with
just a fraction of tubes in the whole myeloid panel.

3.4. Prognostic value of AI-diagnosis of MFC data on clinical outcome

To evaluate the prognostic significance of the binary classification by
AI, survival analysis was conducted on 287 AML patients in the outcome
set. The median follow-up was 21·3 (ranging 1·0–96·1) months, and
their demographics were shown in Table 2. Majority of them received
standard induction chemotherapy (n = 262, 91·3%), and 144 (49·8%)
had received allo-HSCT. Based on the genetic risk stratification [32],
the adverse, intermediate and favorable risk categories took 19·5% (n
= 56), 60·6% (n = 174) and 19·5% (n = 56) of the patients, respec-
tively. The patients with abnormal post-inductionMFC by AI had signif-
icantworse prognosis compared to thosewith normal one (median PFS:
4·9 (95% confidence interval (CI) 4·4–5·6) vs 10·9 (8·2–14·0)months,
p b 0·0001 (Fig. 4A); median OS: 6·5 (95% CI 5·4–8·0) vs 13·6
(11·2–18·8) months, p b 0·0001 (Fig. 4B). In the univariate analysis,
Table 1
Single tube feature selection analysis with two-fold validation.

Datasets AUC of each individual tube

1st 2nd 3rd 4th 5th 6th

Calibur Fold 1 0·898 0·924 0·913 0·917 0·902 0·91
N 2014 2016 2016 2016 2011 2011
Fold 2 0·920 0·932 0·928 0·934 0·933 0·93
N 2070 2071 2072 2072 2068 2069

Canto-II Fold 1 0·829 0·840 0·850 0·844 0·847 0·85
N 2149 2150 2149 2150 2149 2149
Fold 2 0·843 0·848 0·849 0·858 0·869 0·85
N 2197 2197 2196 2197 2196 2196

Markers measure in each tube are the same as that in Supplement Table S2.
genetic risk groups and MFC diagnosis by AI had impacts on both PFS
and OS (Table 3). Furthermore, multivariate analysis confirmed genetic
risk groups and MFC diagnosis by AI were also independent prognostic
factors (Table 3). These results were also illustrated by survival curve
7th 8th 9th 10th 11th 12th 13th

7 0·914 0·911 0·931 0·931 0·924 – –
2010 2010 1876 1908 2012 – –

1 0·943 0·939 0·937 0·940 0·934
2069 2069 1927 1964 2070

7 0·844 0·832 0·870 0·863 0·860 0·841 0·841
2149 2149 2147 1386 1290 798 815

9 0·859 0·821 0·874 0·858 0·841 0·844 0·886
2196 2196 2193 1424 1322 816 828



Fig. 4. Kaplan-Meier curves of progression-free survival (PFS) and overall survival (OS) by post-induction AI diagnosis in patients with AML. (A) Significant longer post-induction PFS
observed in the “AI diagnosis: normal” group (median PFS 10·9 months (95% CI 8·2–14·0 months), n = 144) compared to the “AI diagnosis: abnormal” group (median PFS
4·9 months (95% CI 4·4–5·6 months), n = 143), log-rank P b ·001. b) Significant longer post-induction OS was observed in the “AI diagnosis: normal” group (median OS
13·6 months (95% CI 11·2–18·8 months), n = 144) compared to the “AI diagnosis: abnormal” group (median OS 6·5 months (95% CI 5·4–8·0 months), n = 143), log-rank P b ·001
Abbreviation: AI, artificial intelligence; CI, confidence interval
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stratified by genetic risk groups (Supp. Fig. S2). For AML patients with
favorable genetic risk, those with abnormal post-induction MFC by AI
had significant worse PFS and OS than those with normal one (median
PFS 5·3 (95% CI 4·8- not reached) vs 15·4 (12·9-not reached) months,
p=0·049; median OS 9·1 (95% CI 6·2-not reached) vs 28·1 (18·0-not
reached) months, p = 0·031); this was also true for AML patients with
intermediate genetic risk (median PFS 5·5 (95% CI 4·5–7·5) vs 10·6
(8·2–14·1) months, p b 0·001; median OS 6·7 (95% CI 5·3–9·1) vs
14·4 (11·2–22·0) months, p b 0·001). However, no significant differ-
ences were noted for AML patients with adverse genetic risk.
4. Discussion

In this study, we showed that a SML approach combining GMM-
based phenotype representation with SVM supervised models trained
on a large amount of MFC data can rapidly classify specimens with
high accuracy, and the results are of high prognostic significance for
AML patients after induction chemotherapy. Furthermore, the average
time for the algorithm to accomplish the task on one sample was
roughly 7 s, in contrast with 20min estimated to be required formanual
gating by an experienced hematologist. Therefore, this study demon-
strated that SML algorithm can be clinically-useful in supporting physi-
cians to conduct MFC interpretation with high efficiency and fidelity.
Table 3
Prognostic significance of variables in PFS and OS by univariate and Multivariate Cox proportio

PFS analysis subgroups Univariate Cox analysis

HR (95%CI)

Gender (Male: Female) 1·00 (0·77–1·32)
Age (N50 y: ≤50 y) 1·19 (0·87–1·63)
Genetic group (favorable: adverse) 0·27 (0·17–0·42)
Genetic group (intermediate: adverse) 0·42 (0·30–0·59)
Induction (Standard: non-standard) 0·63 (0·39–1·01)
AI Diagnosis (no abnormality: abnormal) 0·48 (0·37–0·63)

OS analysis subgroups Univariate Cox analysis

HR (95%CI)

Gender (Male: Female) 1·02 (0·78–1·33)
Age (N50 y: ≤50 y) 1·14 (0·84–1·56)
Genetic group (favorable: adverse) 0·25 (0·16–0·39)
Genetic group (intermediate: adverse) 0·46 (0·33–0·64)
Induction (Standard: non-standard) 0·75 (0·44–1·17)
AI Diagnosis (no abnormality: abnormal) 0·44 (0·34–0·58)

Abbreviation: PFS, progression free survival; OS, overall survival, HR: hazard ratio, CI: confiden
a Included in multivariate Cox analysis.
The time, manpower and training requirement for MFC interpretation
can be significantly reduced.

Detecting MRD plays an important role in guiding decisions in
treating hematological malignancies, because persistent detectable
MRD usually indicates inadequate treatment and therefore implies
poor prognosis [2]. In myeloid leukemia, e.g. AML and MDS, although
detecting MRD with MFC is proved to be of prognostic significance for
survival [4–10], the methodology is still evolving and no best strategy
is identified yet, probably because the MFC expression profiles of
normal bonemarrow elements and their disease counterpart are signif-
icantly overlapped. Considering the nature of potential antigen expres-
sion alteration during AML disease progression, we used the expert
labeling from the “different-from-normal” approach for our SML algo-
rithm development; we also used “pooled” non-leukemic bonemarrow
as the normal template, instead of pre-set immunophenotypic pheno-
types from experiences. Stressed bone marrow, therefore, can probably
be more efficiently separated from true MRD-positive bone marrow
samples.

Although themanual gating is still the mainstream of MFC interpre-
tation in clinical service, interpersonal variability during gating has been
shown as amajor factor affecting outcomeprediction in flow-cytometry
based experiments [43]. Moreover, with modern MFC platforms
measuring N100 parameters on a single-cell level [26], conventional
2D-plot manual gating is becoming an infeasible means to
nal hazards regression analysis.

Multivariate Cox analysis

P value HR (95% CI) P value

0·977 – –
0·288 – –
b001a 0·31 (0·20–0·49) 3·6 × 10−7

b001a 0·42 (0·30–0·59) 4·9 × 10−7

0·057 – –
b001a 0·52 (0·39–0·69) 4·4 × 10−6

Multivariate Cox analysis

P value HR (95% CI) P value

0·885 – –
0·395 – –
b001a 0·31 (0·19–0·48) 3·8 × 10−7

b001a 0·49 (0·35–0·68) 2·0 × 10−5

0·205 – –
b001a 0·51 (0·38–0·67) 1·4 × 10−6

ce interval.
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comprehensively present the information acquired in the measured
MFC data to the physicians. Numerous groups have developed compu-
tational methods to accelerate the MFC data analysis to address this
issue [12,27–29,44]. SVM-based approaches have been shown to
achieve great performance in leukemia vs non-leukemia cell classifica-
tion. For instance, A SVM based model developed by Toedling et al.
was able to distinguish acute lymphoblastic leukemia (ALL) from non-
ALL cells with 99·78% specificity and 98·87% sensitivity [30]. However,
themodel was developed on a small cohort of 37 patients and the spec-
imen sources include both peripheral blood and bone marrow.
Distributional-based clustering approach has also been proposed in im-
proving the visualization process, e.g., a non-parametric Bayesianmodel
[45] or GaussianMixtureModel (GMM) [46]. The GMM-based approach
uses non-negative matrix factorization to derive lower dimension fea-
ture space in an unsupervised manner and could be effective for cell
clustering purposes [46]. Since our goal is to distinguish the abnormal
samples from normal samples not abnormal cells from normal cells
within one sample, the supervised feature selection can directly extract
effective feature dimensions.

An AutoFLOW project has been established and a software package
developed supervised GMMapproach to assist the ALLMRDassessment
[31]. This study demonstrated that both SVM-based and GMM-based
models are very promising to become a next-generation automated
MFC analysis tool. However, they were developed on ALL disease with
relative stable immunophenotypic compare to AML, which may have
antigenic shift from diagnosis to relapse. In addition, in the bone mar-
row environment, the presence of normal myeloid lineages cells is
mixed with malignant myeloid leukemia cells of AML patients, there-
fore, the approach that is successful for ALL specimens won't necessary
applicable to AML. Hence the performance on classification of AML vs
non-AML diseases should be investigated in separate studies.

Several SML approaches have been reported to have promising per-
formance in analyzing AML MFC data. For instance, Thomas et al. used
viSNE clustering to help improve visualization in themanual gating pro-
cess to achieve better sensitivity in recognizing AML samples [47]. A
LIBSVM model has shown to achieve 0·986 efficiency between auto-
mated and conventional analysis in AML MRD cell fraction assessment
[32]. However, this model was trained on a small cohort (159 data
from 36 patients), which can raise concerns about their representation
of the heterogeneity of the disease in real-world setting. In addition to
cell type classificationmodels, the Flow-CAP project has identifiedmul-
tiple computational MFC analysis methods with great sample classifica-
tion performance (accuracy 0·92–1·00). However, concerns about the
representative sampling for the small cohort (only 43 AML out of 359
peripheral blood samples) still exist [12]. Another non-parametric
Bayesian-GMM model has been shown to be able to recognize differ-
ences between normal and AML samples, and also the direction of
change in disease progression [33]. The Bayesian-GMMmodel was de-
veloped using hyper-parameters prior to determining the number of
clusters, which would be inefficient if the data and the clusters do not
fit to assumption of prior. Compared to the posterior probability values
as the phenotype vector approach used in this study [33], we used
fisher-scoring phenotype vector to further include the gradient of prob-
ability function which provides strong discriminative power. Further-
more, the model was trained using 100 AML vs 100 non-AML
peripheral blood and 49 stage I lymphoma vs 100 AML bone marrow
specimens [33], both of which are small cohort and the comparison
weren't being able to simulate that in clinical practice. Another potential
drawback for above approaches is that their classification models were
developed in peripheral blood samples, while evaluation on samples
from bone marrow is still the mainstay in clinical practice. As the bone
marrow environment contains many cell types at various developmen-
tal stages while majority cells in peripheral blood are fully developed
and differentiated, classificationmodels for these two specimens should
be developed separately if wewere to apply them in clinical setting, and
to establish classification models in bone marrow would be more
difficult [30]. Nowadays, many open sourced automated MFC analysis
tools have been released, but it remains a challenge to perform compar-
isons across different subjects, timepoints, and experimental conditions
[34,48]. For instance, continuous changes from premalignant MDS to
AMLmake it hard to develop a distinct biology-based classification sys-
tem because of their significant morphological and genetic diversity.
Due to the heterogeneity of the MDS and AML as well as the complex
composition of the bone marrow specimens, there hasn't been an algo-
rithm developed for AML and MDS MRD detection and clinically vali-
dated. In our study, we addressed this issue by utilizing a large
number of real-world samples consisting of both normal (non-dis-
eased) and abnormal (diseased) clinical phenotypes to develop classifi-
cation algorithms, which allows more flexibility when making a
diagnosis.

GMM was used as our background generative model, and then a
probabilistic gradient-based approach, i.e., the Fisher scoring vector
[49], for deriving the high-dimensional MFC feature vector representa-
tion. This particular approach is both generative and discriminative.
The feature vector captures the variabilities and interacting information
on themulti-measurements per sample. The use of vectorized approach
is important in achieving strong supervised classifier training on a large-
scale data samples, and is important in speed up the computation. The
remarkable performance can be attributed to fundamentally different
approaches in terms of automating the diagnosis procedure. Deriving
a phenotype representation that captures inherent variabilities in a
high dimensional space in combination with maximum-boundary
based optimization used in the SVM naturally provides a better predic-
tive power.

In our study, three binary classification models for predicting AML-
vs-normal, MDS-vs-normal and abnormal-vs-normal were constructed,
instead of a multi-class classification model. This is because AML and
MDS can represent as a continuous disease spectrum rather than two
distinct diseases, asmentioned before. To address definitemanual inter-
pretation inMFC data from these caseswould be of question, so that we
still constructed three binary classification systems in our experiments.
In all of our binary classification tasks, the algorithm performance
reached over 0·85 ACC, suggesting a good consistency with manual
analyses. Mismatching may be related to low-frequency aberrant phe-
notypes with inadequate training samples for algorithm, peripheral
blood contamination in bone marrow samples, or even from
misclassified manual gating due to interpersonal idiosyncrasy. Increas-
ing training sample size, incorporating results from other MRD detect-
ing methods for data labeling, or direct training with clinical
endpoints may help to resolve this issue. Developing a multi-class clas-
sification model is also a potential future research direction.

We found that AUCs were generally slightly higher for Calibur sub-
dataset compared to Canto-II sub-dataset and in Calibur+Canto-II
sub-datasets (Supp. Table S5). The differences between Calibur and
Canto-II sub-datasets originate not only from the machines but also in
the collection of samples. The difference in the machine reading was
mitigated by adopting the numerical transformation between the two
machines given by the manufacturer, and we have further ensured the
tube dimension was the same in our experiments. The pooled data to-
gether was to ensure the completeness of the experiments. However,
it is evident that the differences between the twomachines are not sim-
ply result of numerical reading but also additional factors (for example,
the year for sample collection), which require future investigation
study. This also further underscores the importance of our on-going ef-
fort in developing appropriate general/transferrable (or machine-
appropriate) algorithms across sites and across machines.

Another interesting finding in our study is that the results of feature
selection analysis support discarding the data dimensions on the tube
level in order not only to reduce the computation loading on the classi-
fier [50], and also provide understanding about the power of each tube
in identifying the relevant disease. The study reported by Hassan et al.
used the several statistics function to encode the raw feature as a vector
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while we used probability based clusters to encode raw features as our
phenotype encoding vector method [50]. This approach allows more
flexible and representative to describe the latent distribution compared
to only using statistics values.Moreover, the SVMapproach can bemore
discriminative in classification tasks compared to LR utilized in the
Hassan et al. study [50].

We found that for Caliber sub-dataset, as few as one tube (3
markers) can achieve AUC of 0·920, while the AUC from all tubes was
improved slightly to 0·934. The findings for Canto-II were similar.
These results implicate that the tubes required for MRD detection
could be greatly reduced with SML approach, and hence the time and
cost of MFC running time. The biological implications of these findings
are also worthy of further exploration.

In summary, machine learning is a powerful tool for automatedMFC
analysis on MRD detection in AML and MDS. It not only is a faster and
reliable way forMFC data interpretation, but also possess a great advan-
tage in its ability to integrate with other clinical tests including mor-
phology, genomics, and cytogenetics for MRD detection and
prognostic stratification. Although future research is still needed to val-
idate the full spectrum of utilization in clinical practice, a clinical
decision-making support system can be started with this scalable and
reproducible approach.
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